Monkey Prefrontal Neuronal Activity Coding the Forthcoming Saccade in an Oculomotor Delayed Matching-to-Sample Task

Author:

Hasegawa Ryohei1,Sawaguchi Toshiyuki1,Kubota Kisou1

Affiliation:

1. Department of Behavioral and Brain Sciences, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi 484, Japan

Abstract

Hasegawa, Ryohei, Toshiyuki Sawaguchi, and Kisou Kubota. Monkey prefrontal neuronal activity coding the forthcoming saccade in an oculomotor delayed matching-to-sample task. J. Neurophysiol. 79: 322–333, 1998. To determine the role of the dorsolateral prefrontal cortex (PFC) in the selection of memory-guided saccadic eye movements, we recorded the activities of PFC neurons while macaque monkeys performed an oculomotor delayed matching-to-sample task. The task was designed to dissociate motor factors from visual factors in the selection and retention of the direction of the forthcoming saccade during delay periods after the visual cue but before the GO signal was presented. While the monkey fixated on a central fixation spot (FX period, 1 s), a sample cue (1 of 4 geometric figures) and a matching cue composed of two geometric figures were presented in succession (SC and MC periods, respectively, 0.5 s) with a brief delay (D1 period, 1 or 1.5 s). After another delay (D2 period, 1.5 s), the monkey made a saccade (GO period, <0.5 s) toward one of four locations (the goal) that had been indicated by the combination of the sample and matching cues in the MC period. We recorded the activities of 224 neurons in the periprincipal sulcal area of 3 hemispheres of 2 monkeys. Sixty-five neurons (29%) showed a significant increase in activity during the D2 period. Some of these also responded during other phases of the task (SC period, n = 32; D1, 22; MC, 53; GO, 47). Some of the activity during the D2(52/65, 80%) and GO (40/47, 85%) periods was associated with the direction of the forthcoming saccade (“direction selective”). Although most MC-period activities of D2 neurons were direction selective (38/53, 73%), a fraction of them (14/38) was also affected by both saccade direction and matching cue pattern. To compare quantitatively the contribution of motor (saccade direction) and visual (matching-cue pattern) factors to the activity of D2 neurons, we calculated directional and visual dependency indices (DDI and VDI) for each of the three periods (MC, D2, and GO). In both the D2 and GO periods, D2 neurons with high DDI values and low VDI values predominated. In the MC period, however, there was no significant difference between the distributions of DDI and VDI values. These findings suggest that PFC neurons store the direction of memory-guided saccades during a delay period before eye movement and that the same neurons may be involved in the decision-making process that underlies the selection of the saccade direction during the MC period.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3