Development of Glycinergic Synaptic Transmission to Rat Brain Stem Motoneurons

Author:

Singer Joshua H.1,Talley Edmund M.2,Bayliss Douglas A.2,Berger Albert J.1

Affiliation:

1. Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195–7290; and

2. Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908

Abstract

Singer, Joshua H., Edmund M. Talley, Douglas A. Bayliss, and Albert J. Berger. Development of glycinergic synaptic transmission to rat brain stem motoneurons. J. Neurophysiol. 80: 2608–2620, 1998. Using an in vitro rat brain stem slice preparation, we examined the postnatal changes in glycinergic inhibitory postsynaptic currents (IPSCs) and passive membrane properties that underlie a developmental change in inhibitory postsynaptic potentials (IPSPs) recorded in hypoglossal motoneurons (HMs). Motoneurons were placed in three age groups: neonate (P0–3), intermediate (P5–8), and juvenile (P10–18). During the first two postnatal weeks, the decay time course of both unitary evoked IPSCs [mean decay time constant, τdecay = 17.0 ± 1.6 (SE) ms in neonates and 5.5 ± 0.4 ms in juveniles] and spontaneous miniature IPSCs (τdecay = 14.2 ± 2.4 ms in neonates and 6.3 ± 0.7 ms in juveniles) became faster. As glycine uptake does not influence IPSC time course at any postnatal age, this change most likely results from a developmental alteration in glycine receptor (GlyR) subunit composition. We found that expression of fetal (α2) GlyR subunit mRNA decreased, whereas expression of adult (α1) GlyR subunit mRNA increased postnatally. Single GlyR-channels recorded in outside-out patches excised from neonate motoneurons had longer mean burst durations than those from juveniles (18.3 vs. 11.1 ms). Concurrently, HM input resistance ( R N) and membrane time constant (τm) decreased ( R N from 153 ± 12 MΩ to 63 ± 7 MΩ and τm from 21.5 ± 2.7 ms to 9.1 ± 1.0 ms, neonates and juveniles, respectively), and the time course of unitary evoked IPSPs also became faster (τdecay = 22.4 ± 1.8 and 7.7 ± 0.9 ms, neonates vs. juveniles, respectively). Simulated synaptic currents were used to probe more closely the interaction between IPSC time course and τm, and these simulations demonstrated that IPSP duration was reduced as a consequence of postnatal changes in both the kinetics of the underlying GlyR channel and the membrane properties that transform the IPSC into a postsynaptic potential. Additionally, gramicidin perforated-patch recordings of glycine-evoked currents reveal a postnatal change in reversal potential, which is shifted from −37 to −73 mV during this same period. Glycinergic PSPs are therefore depolarizing and prolonged in neonate HMs and become faster and hyperpolarizing during the first two postnatal weeks.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3