Effect of a Serotonergic Extrinsic Modulatory Neuron (MCC) on Radula Mechanoafferent Function in Aplysia

Author:

Alexeeva Vera1,Borovikov Dmitry1,Miller Mark W.2,Rosen Steven C.3,Cropper Elizabeth C.14

Affiliation:

1. Department of Physiology and Biophysics and

2. Institute of Neurobiology and Department of Anatomy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901; and

3. Center for Neurobiology and Behavior, The New York State Psychiatric Institute, New York, New York 10032

4. The Fishberg Center for Research in Neurobiology, The Mt. Sinai Medical Center, New York, New York 10029;

Abstract

Alexeeva, Vera, Dmitry Borovikov, Mark W. Miller, Steven C. Rosen, and Elizabeth C. Cropper. Effect of a serotonergic extrinsic modulatory neuron (MCC) on radula mechanoafferent function in Aplysia. J. Neurophysiol. 80: 1609–1622, 1998. The serotonergic metacerebral cells (MCCs) and homologous neurons in related mollusks have been extensively investigated within the context of feeding. Although previous work has indicated that the MCCs exert widespread actions, MCC modulation of sensory neurons has not been identified. We characterized interactions between the MCCs and a cell that is part of a recently described group of buccal radula mechanoafferents. The cell, B21, has a peripheral process in the tissue underlying the chitinous radula [the subradula tissue (SRT)]. Previous studies have shown that B21 can fire phasically during ingestive motor programs and provide excitatory drive to the circuitry active during radula closing/retraction. We now show that activity of B21 can be modulated by serotonin (5-HT) and the MCCs. Centrally, although a slow depolarization is typically recorded in B21 as a result of MCC stimulation, this depolarization does not cause B21 to spike. It can, however, increase B21 excitability enabling a pulse that was previously subthreshold to elicit an action potential in B21. B21 is in fact rhythmically depolarized during the radula closing/retraction phase of ingestive motor programs. Thus central effects of the MCCs on radula mechanoafferent activity are only likely to be apparent while B21 is receiving input from the feeding central pattern generator. Peripherally, radula mechanoafferent neurons can be activated 1) when a mechanical stimulus is applied to the biting surface of the SRT and 2) when the SRT contracts. MCC stimulation and 5-HT modulate B21 responses to both types of stimuli. For example, MCC stimulation and low concentrations of 5-HT cause subthreshold mechanical stimuli applied to the SRT to become suprathreshold. 5-HT and MCC stimulation also enhance SRT contractility. Peripheral effects of MCC activity are also likely to be phase dependent. For example, MCC stimulation does not cause B21 to respond to peripheral stimuli with an afterdischarge. Consequently, radula mechanoafferents are likely to be activated when food is present between the radula halves during radula closing/retraction but are not likely to continue to fire as opening/protraction is initiated. In a similar vein, MCC effects on the contractility of the SRT will only be apparent when contractions are elicited by motor neuron activity. SRT motor neurons are rhythmically activated during ingestive motor programs. Thus we have shown that radula mechanoafferent activity can be modulated by the MCCs and that this modulation is likely to occur in a phase-dependent manner.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3