Affiliation:
1. Department of Physiology and Biophysics and Neuroscience Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
Abstract
Magoski, Neil S. and Andrew G. M. Bulloch. Trophic and contact conditions modulate synapse formation between identified neurons. J. Neurophysiol. 79: 3279–3283, 1998. We tested the ability of an identified interneuron from the mollusk, Lymnaea stagnalis, to reestablish appropriate synapses in vitro. In the CNS, the giant dopaminergic neuron, designated as right pedal dorsal one (RPeD1), makes an excitatory, chemical synapse with a pair of essentially identical postsynaptic cells known as visceral dorsal two and three (VD2/3). When the somata of the pre- and postsynaptic neurons were juxtaposed and cultured in vitro in defined medium, i.e., a soma-soma synapse, only an inappropriate electrical synapse was observed. The postsynaptic cell still responded to applied dopamine, the presynaptic transmitter, indicating that the lack of chemical synapse formation was not due to lack of dopamine receptors. When the somata were cultured apart in conditioned medium (medium previously incubated with Lymnaea CNS, thereby deriving trophic factors), the cells exhibited overlapping neurite outgrowth that resulted in an appropriate excitatory, chemical synapse from RPeD1 to VD2/3. On the other hand, when the cell pair was cultured in a soma-soma configuration, but in conditioned medium, a mixed chemical-electrical synapse was observed. Because conditioned medium could partially overcome the limitations of the soma-soma configuration and initiate chemical synapse formation, this data suggests that conditioned medium contains a factor(s) that supports synaptogenesis.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献