Motor Patterns for Human Gait: Backward Versus Forward Locomotion

Author:

Grasso R.1,Bianchi L.1,Lacquaniti F.1

Affiliation:

1. Human Physiology Section, Scientific Institute Santa Lucia, National Research Council, University of Tor Vergata, 00179 Rome, Italy

Abstract

Grasso, R., L. Bianchi, and F. Lacquaniti. Motor patterns for human gait: backward versus forward locomotion. J. Neurophysiol. 80: 1868–1885, 1998. Seven healthy subjects walked forward (FW) and backward (BW) at different freely chosen speeds, while their motion, ground reaction forces, and electromyographic (EMG) activity from lower limb muscles were recorded. We considered the time course of the elevation angles of the thigh, shank, and foot segments in the sagittal plane, the anatomic angles of the hip, knee, and ankle joints, the vertical and longitudinal ground reaction forces, and the rectified EMGs. The elevation angles were the most reproducible variables across trials in each walking direction. After normalizing the time course of each variable over the gait cycle duration, the waveforms of all elevation angles in BW gait were essentially time reversed relative to the corresponding waveforms in FW gait. Moreover, the changes of the thigh, shank, and foot elevation covaried along a plane during the whole gait cycle in both FW and BW directions. Cross-correlation analysis revealed that the phase coupling among these elevation angles is maintained with a simple reversal of the delay on the reversal of walking direction. The extent of FW–BW correspondence also was good for the hip angle, but it was smaller for the knee and ankle angles and for the ground reaction forces. The EMG patterns were drastically different in the two movement directions as was the organization of the muscular synergies measured by cross-correlation analysis. Moreover, at any given speed, the mean EMG activity over the gait cycle was generally higher in BW than in FW gait, suggesting a greater level of energy expenditure in the former task. We argue that conservation of kinematic templates across gait reversal at the expense of a complete reorganization of muscle synergies does not arise from biomechanical constraints but may reflect a behavioral goal achieved by the central networks involved in the control of locomotion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3