Endogenous Opioid Peptides Acting at μ-Opioid Receptors in the Dorsal Horn Contribute to Midbrain Modulation of Spinal Nociceptive Neurons

Author:

Budai Dénes1,Fields Howard L.1

Affiliation:

1. Departments of Neurology and Physiology and the W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, California 94143-0114

Abstract

Budai, Dénes and Howard L. Fields. Endogenous opioid peptides acting at μ-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. J. Neurophysiol. 79: 677–687, 1998. Activation of neurons in the midbrain periaqueductal gray (PAG) inhibits spinal dorsal horn neurons and produces behavioral antinociception in animals and analgesia in humans. Although dorsal horn regions modulated by PAG activation contain all three opioid receptor classes (μ, δ, and κ), as well as enkephalinergic interneurons and terminal fields, descending opioid-mediated inhibition of dorsal horn neurons has not been demonstrated. We examined the contribution of dorsal hornμ-opioid receptors to the PAG-elicited descending modulation of nociceptive transmission. Single-unit extracellular recordings were made from rat sacral dorsal horn neurons activated by noxious heating of the tail. Microinjections of bicuculline (BIC) in the ventrolateral PAG led to a 60–80% decrease in the neuronal responses to heat. At the same time, the responses of the same neurons to iontophoretically applied NMDA or kainic acid were not consistently inhibited. The inhibition of heat-evoked responses by PAG BIC was reversed by iontophoretic application of the selective μ-opioid receptor antagonists, d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) and d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). A similar effect was produced by naloxone; however, naloxone had an excitatory influence on dorsal horn neurons in the absence of PAG-evoked descending inhibition. This is the first demonstration that endogenous opioids acting via spinal μ-opioid receptors contribute to brain stem control of nociceptive spinal dorsal horn neurons. The inhibition appears to result in part from presynaptic inhibition of afferents to dorsal horn neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3