Influence of Predictive Information on Responses of Tonically Active Neurons in the Monkey Striatum

Author:

Apicella Paul1,Ravel Sabrina1,Sardo Pierangelo2,Legallet Eric1

Affiliation:

1. Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France; and

2. Istituto di Fisiologia Umana, Università di Palermo, 90134 Palermo, Italy

Abstract

Apicella, Paul, Sabrina Ravel, Pierangelo Sardo, and Eric Legallet. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J. Neurophysiol. 80: 3341–3344, 1998. We investigated how the expectation of a signal of behavioral significance influences the activity of tonically active neurons in the striatum of two monkeys performing a simple reaction time task under two conditions, an uncued condition in which the trigger stimulus occurred randomly in time and a cued condition in which the same trigger was preceded by an instruction stimulus serving as a predictive signal for the forthcoming signal eliciting an immediate behavioral reaction. Both monkeys benefited from the presence of the instruction stimulus to reduce their reaction time, suggesting an increased ability to predict the trigger onset during cued trials compared with uncued trials. A majority of neurons (199/272, 73%) showed a phasic reduction in activity after the onset of the trigger stimulus in the uncued condition, whereas only 38% responded to the same stimulus when it was preceded by the instruction. Furthermore, magnitudes of trigger responses in the uncued condition were significantly higher than in the cued condition. Fifty-seven percent of the neurons responded to the instruction stimulus, and one-half of the neurons losing their response to the trigger in the cued condition responded to the instruction stimulus. These findings suggest that responses of tonic striatal neurons to a trigger stimulus for movement were influenced by predictive information.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3