Resting Membrane Properties of Locust Muscle and Their Modulation I. Actions of the Neuropeptides YGGFMRFamide and Proctolin

Author:

Walther Christian1,Zittlau Klaus E.1,Murck Harald1,Voigt Karlheinz1

Affiliation:

1. Physiological Institute, Neuroendocrinology Working Group, University of Marburg, 35037 Marburg, Germany

Abstract

Walther, Christian, Klaus E. Zittlau, Harald Murck, and Karlheinz Voigt. Resting membrane properties of locust muscle and their modulation. I. Actions of the neuropeptides YGGFMRFamide and proctolin. J. Neurophysiol. 80: 771–784, 1998. The resting K+ conductance ( G K,r) of locust jumping muscle and its modulation by two neuropeptides, proctolin (Arg-Tyr-Leu-Pro-Thr) and YGGFMRFamide (Tyr-Gly-Gly-Phe-Met-Arg-Phe-NH2), were investigated using the two-electrode voltage clamp. At a physiological [K+]o of 10 mM, G K,r accounts for ∼90% of the membrane resting conductance, and the resting membrane potential differs by ≤1 mV from E K (mean: −74 mV). There is a K+ conductance that slowly activates on hyperpolarization ( G K,H) and that seems to be largely located in the transverse tubules. Steady-state activation of G K,H was analyzed by tail current measurements. G K,H is activated partially at E K but accounts for probably ≤50% of total resting K+ conductance. Raising [K+]o caused a large increase in G K,r and in maximal steady state G K,H without shifting the voltage sensitivity of G K,H. YGGFMRFamide and proctolin reduce G K,H, mainly affecting the maximal steady-state conductance. The voltage-insensitive component of the resting K+ conductance is also reduced. The conductance suppressed by the peptides exhibited an outwardly rectifying instantaneous current/voltage-characteristic that is quite similar to that of G K,H. The actions of the two peptides appeared to be identical, but proctolin was by some two orders of magnitude more potent than YGGFMRFamide. The effects of both peptides are mediated by G proteins. They are mimicked by phorbol esters but do not seem to be initiated by either branch of the phospholipase C-dependent intracellular pathways. The properties of the resting K+ conductance in locust muscle and other invertebrate muscles are compared. The biological significance of peptide-induced reduction in resting K+ conductance is discussed in view of the known property of proctolin to support tonic force as opposed to FMRFamide-peptides that support quick leg movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3