Adenosine A1 Receptors Mediate Retinotectal Presynaptic Inhibition: Uncoupling by C-Kinase and Role in LTP During Regeneration

Author:

Zhang Chunyi1,Schmidt John T.1

Affiliation:

1. Department of Biological Sciences and Neurobiology Research Center, State University of New York, Albany, New York 12222

Abstract

Zhang, Chunyi and John T. Schmidt. Adenosine A1 receptors mediate retinotectal presynaptic inhibition: uncoupling by C-kinase and role in LTP during regeneration. J. Neurophysiol. 79: 501–510, 1998. Presynaptic adenosine receptors inhibit transmitter release at many synapses and are known to exist on retinotectal terminals. In this paper we show that adenosine decreases retinotectal field potentials by ∼30% and investigate the mechanism. First, as judged by the effects of specific calcium channel blockers, retinotectal transmission was mediated almost exclusively by N-type calcium channels, which are known to be modulated by adenosine A1 receptors. Transmission was completely blocked by either ω-Conotoxin GVIA (−100%, N-type blocker) or ω-Conotoxin MVIIC (−99%, N-, P- and Q-type blocker) and was not significantly affected by ω-Agatoxin IVA [+1.7 ± 9.3% (SE), P-,Q-type blocker], but was augmented slightly by nifedipine(+9.3 ± 2.1%, L-type blocker). Second, the adenosine inhibition was presynaptic, as indicated by a 43% increase in paired-pulse facilitation. Third, the selective A1 agonist cyclohexyl adenosine (CHA) at 50 nM caused a 21% decrease in amplitude and the selective A2 agonist N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) at 100 nM caused a 24% increase. Fourth, the selective A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) alone produced an increase in the field potential, suggesting a tonic inhibition mediated by endogenous adenosine. Fifth, pertussis toxin eliminated adenosine inhibition implicating Gi or Go protein coupling. Sixth, C-kinase activation eliminated the A1-mediated inhibition. In regenerating projections, adenosine also caused a decrease in transmission (−30 ± 12%), but after induction of long-term potentiation (LTP) via trains of stimuli or via treatment with the phosphatase inhibitor okadaic acid, the adenosine response was converted to an augmentation. Because LTP is associated with C-kinase activation, this is consistent with C-kinase uncoupling the A1 receptor from inhibiting N-type Ca2+ channels. This uncovers the A2-mediated augmentation as demonstrated in normals with DPMA. Such an effect could account in part for the LTP of immature synapses and the change from rapidly fatiguing to robust synaptic transmission.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3