Mesolimbic Component of the Ascending Cholinergic Pathways: Electrophysiological-Pharmacological Study

Author:

Brudzynski Stefan M.1,Kadishevitz Ludmila2,Fu Xiao-Wen2

Affiliation:

1. Department of Psychology, Brock University, St. Catharines, Ontario L2S 3A1; and

2. Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario N6A 5A5, Canada

Abstract

Brudzynski, Stefan M., Ludmila Kadishevitz, and Xiao-Wen Fu. Mesolimbic component of the ascending cholinergic pathways: electrophysiological-pharmacological study. J. Neurophysiol. 79: 1675–1686, 1998. The cholinergic input from the pontomesencephalic cholinergic neurons to the diencephalic and basal forebrain structures has been implicated in a number of limbically controlled overt behaviors. The cellular mechanism by which the cholinergic terminals initiate behavioral manifestations is not clear. The objective of this study was to investigate the effects of the ascending cholinergic projection from the laterodorsal tegmental nucleus (LDT) on neuronal firing in the anterior hypothalamic-medial preoptic region (AHMP), known to be involved in agonistic behavior. Experiments were performed on urethan-anesthetized rats. Iontophoretic application of carbachol (CCh) into the vicinity of single cells in the AHMP caused a dose-dependent decrease in the mean firing rate of 83% of units and an increase in 10% of units. The inhibitory effect of CCh, but not the excitatory effect, was reversed by iontophoretic pretreatment with scopolamine. The inhibition of the firing rate was repeatable for the same dose of CCh and dose dependent. Electrical stimulation of neurons in the LDT caused a comparable, current-dependent decrease in the mean firing rate of AHMP neurons that also was reversed by pretreatment of neurons in the AHMP with scopolamine. The antagonizing effects of scopolamine were reversible with time. The same units in the AHMP that inhibited their firing to stimulation of the LDT also responded with a similar inhibition to local iontophoretic CCh. Finally, the fluorescent carbocyanine dye, 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide, (DiA), has been used as a retrograde axonal tracer and was injected into the recording sites immediately after the electrophysiological recordings. After 1 wk, DiA dye was found in numerous neurons in the LDT as shown by the fluorescence confocal microscopy. Results of the study suggest that LDT cholinergic neurons project and terminate in the AHMP and that their activation causes a decrease in the mean firing rate of the AHMP neurons. It is postulated that this inhibitory effect is implicated in the initiation of some of the behavioral patterns like defensive or alarm vocalization and behavioral inhibition.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3