Minimal Model of Oscillations and Waves in the Limax Olfactory Lobe With Tests of the Model's Predictive Power

Author:

Ermentrout Bard1,Flores Jorge2,Gelperin Alan2

Affiliation:

1. Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; and

2. Biological Computation Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974

Abstract

Ermentrout, Bard, Jorge Flores, and Alan Gelperin. Minimal model of oscillations and waves in the Limax olfactory lobe with tests of the model's predictive power. J. Neurophysiol. 79: 2677–2689, 1998. Propagating waves are observed in the olfactory or procerebral (PC) lobe of the terrestrial mollusk, Limax maximus. Wave propagation is altered by cutting through the various layers of the PC lobe both parallel and transverse to the direction of wave propagation. We present a model for the PC lobe based on two layers of coupled cells. The top layer represents the cell layer of the PC lobe, and the bottom layer corresponds to the neuropil of the PC lobe. To get wave propagation, we induce a coupling gradient so that the most apical cells receive a greater input from neighbors than the basal cells. The top layer in the model is composed of oscillators coupled locally, whereas the bottom layer is comprised of oscillators with global coupling. Odor stimulation is represented by an increase in the strength of coupling between the two layers. This model allows us to explain a number of experimental observations: 1) the intact PC lobe exhibits regular propagating waves, which travel from the apical to the basal end; 2) there is a gradient in the local frequency of slices cut transverse to the axis of wave propagation, with apical slices oscillating faster than basal slices; 3) with partial cuts through the cell layer or the neuropil layer, the apical and basal ends remain tightly coupled; 4) removal of the neuropil layer does not prevent wave propagation in the cell layer; 5) odor stimulation causes the waves to collapse and the cells in the PC lobe oscillate synchronously; and 6) by allowing a single parameter to vary in the model, we capture the reversal of waves in low chloride medium.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3