Pharmacological Characterization of Glycine-Gated Chloride Currents Recorded in Rat Hippocampal Slices

Author:

Chattipakorn Siriporn C.1,McMahon Lori L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

An inhibitory role for strychnine-sensitive glycine-gated chloride channels (GlyRs) in mature hippocampus has been overlooked, largely due to the misconception that GlyR expression ceases early during development and to few functional studies demonstrating their presence. As a result, little is known regarding the physiological and pharmacological properties of native GlyRs expressed by hippocampal neurons. In this study, we used pharmacological tools and whole cell patch-clamp recordings of CA1 pyramidal cells and interneurons in acutely prepared hippocampal slices from 3- to 4-wk old rats to characterize these understudied receptors. We show that glycine application to recorded pyramidal cells and interneurons elicited strychnine-sensitive chloride-mediated currents ( I gly) that did not completely desensitize in the continued presence of agonist but reached a steady state at 45–60% of the peak amplitude. Additionally, the inhibitory amino acid, taurine, which has been shown to activate GlyRs in other systems, activated GlyRs expressed by both pyramidal cells and interneurons, although with much less potency than glycine, having an EC50 10-fold higher. To examine the potential subunit composition of hippocampal GlyRs, we tested the effect of the GABAA receptor antagonist, picrotoxin, on I gly recorded from both cell types. At low micromolar concentrations of picrotoxin (≤100 μM), which selectively block α homomeric GlyRs, I gly was partially attenuated in both cell types, indicating that α homomeric receptors are expressed by pyramidal cells and interneurons. At picrotoxin concentrations ≤1 mM, ∼10–20% of the whole cell current remained, suggesting that αβ heteromeric GlyRs are also expressed because this subtype of GlyR is relatively resistant to picrotoxin antagonism. Finally, we examined whether hippocampal GlyRs are modulated by zinc. Consistent with previous reports in other preparations, zinc elicited a bidirectional modulation of GlyRs, with physiological zinc concentrations (1–100 μM) increasing whole cell currents and concentrations >100 μM depressing them. Furthermore, the same concentration of zinc that potentiates I gly suppressed currents mediated by the N-methyl-d-aspartate subtype of the glutamate receptor. Thus we provide a pharmacological characterization of native GlyRs expressed by both major neuron types in hippocampus and show that these receptors can be activated by taurine, an amino acid that is highly concentrated in hippocampus. Furthermore, our data suggest that at least two GlyR subtypes are present in hippocampus and that GlyR-mediated currents can be potentiated by zinc at concentrations that suppress glutamate-mediated excitability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3