Affiliation:
1. Department of Applied Mathematics and Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
Abstract
The mechanisms and impact of correlated, or synchronous, firing among pairs and groups of neurons are under intense investigation throughout the nervous system. A ubiquitous circuit feature that can give rise to such correlations consists of overlapping, or common, inputs to pairs and populations of cells, leading to common spike train responses. Here, we use computational tools to study how the transfer of common input currents into common spike outputs is modulated by the physiology of the recipient cells. We focus on a key conductance, gA, for the A-type potassium current, which drives neurons between “type II” excitability (low gA), and “type I” excitability (high gA). Regardless of gA, cells transform common input fluctuations into a tendency to spike nearly simultaneously. However, this process is more pronounced at low gA values. Thus, for a given level of common input, type II neurons produce spikes that are relatively more correlated over short time scales. Over long time scales, the trend reverses, with type II neurons producing relatively less correlated spike trains. This is because these cells' increased tendency for simultaneous spiking is balanced by an anticorrelation of spikes at larger time lags. These findings extend and interpret prior findings for phase oscillators to conductance-based neuron models that cover both oscillatory (superthreshold) and subthreshold firing regimes. We demonstrate a novel implication for neural signal processing: downstream cells with long time constants are selectively driven by type I cell populations upstream and those with short time constants by type II cell populations. Our results are established via high-throughput numerical simulations and explained via the cells' filtering properties and nonlinear dynamics.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献