Temporal Development of Anticipatory Reflex Modulation to Dynamical Interactions During Arm Movement

Author:

Kimura Toshitaka1,Gomi Hiroaki12

Affiliation:

1. NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa; and

2. Shimojo Implicit Brain Function Project, ERATO, Japan Science and Technology Agency, Saitama, Japan

Abstract

It is known that somatosensory reflex during voluntary arm movement is modulated anticipatorily according to given tasks or environments. However, when and how reflex amplitude is set remains controversial. Is the reflex modulation completed preparatorily before movement execution or does it vary with the movement? Is the reflex amplitude coded in a temporal manner or in a spatial (or state-dependent) manner? Here we studied these issues while subjects performed planar reaching movements with upcoming opposite (rightward/leftward) directions of force fields. Somatosensory reflex responses of shoulder muscles induced by a small force perturbation were evaluated at several points before the arm encountered predictable force fields after movement start. We found that the shoulder flexor reflex responses were generally higher for the rightward than for the leftward upcoming force fields, whereas the extensor reflex responses were higher for the leftward force field. This reflex amplitude depending on the upcoming force field direction became prominent as the reflex was evoked closer to the force fields, indicating continuous changes in reflex modulation during movement. An additional experiment further showed that the reflex modulation developed as a function of the temporal distance to the force fields rather than the spatial distance. Taken together, the results suggest that, in the force field interaction task, somatosensory reflex amplitude during the course of movement is set anticipatorily on the basis of an estimate of the time-to-contact rather than the state-to-contact, to upcoming dynamical interaction during voluntary movement.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3