Discharge properties of abductor hallucis before, during, and after an isometric fatigue task

Author:

Kelly Luke A.12,Racinais Sebastien12,Cresswell Andrew G.2

Affiliation:

1. Department of Exercise and Sport Science, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar; and

2. Centre for Sensorimotor Neuroscience, School of Human Movement Studies, The University of Queensland, Brisbane, Australia

Abstract

Abductor hallucis is the largest muscle in the arch of the human foot and comprises few motor units relative to its physiological cross-sectional area. It has been described as a postural muscle, aiding in the stabilization of the longitudinal arch during stance and gait. The purpose of this study was to describe the discharge properties of abductor hallucis motor units during ramp and hold isometric contractions, as well as its discharge characteristics during fatigue. Intramuscular electromyographic recordings from abductor hallucis were made in 5 subjects; from those recordings, 42 single motor units were decomposed. Data were recorded during isometric ramp contractions at 60% maximum voluntary contraction (MVC), performed before and after a submaximal isometric contraction to failure (mean force 41.3 ± 15.3% MVC, mean duration 233 ± 116 s). Motor unit recruitment thresholds ranged from 10.3 to 54.2% MVC. No significant difference was observed between recruitment and derecruitment thresholds or their respective discharge rates for both the initial and postfatigue ramp contractions (all P > 0.25). Recruitment threshold was positively correlated with recruitment discharge rate ( r = 0.47, P < 0.03). All motor units attained similar peak discharge rates (14.0 ± 0.25 pulses/s) and were not correlated with recruitment threshold. Thirteen motor units could be followed during the isometric fatigue task, with a decline in discharge rate and increase in discharge rate variability occurring in the final 25% of the task (both P < 0.05). We have shown that abductor hallucis motor units discharge relatively slowly and are considerably resistant to fatigue. These characteristics may be effective for generating and sustaining the substantial level of force that is required to stabilize the longitudinal arch during weight bearing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3