Song Recognition Learning and Stimulus-Specific Weakening of Neural Responses in the Avian Auditory Forebrain

Author:

Thompson Jason V.1,Gentner Timothy Q.12

Affiliation:

1. Graduate Program in Neuroscience and

2. Department of Psychology, University of California San Diego, La Jolla, California

Abstract

Learning typically increases the strength of responses and the number of neurons that respond to training stimuli. Few studies have explored representational plasticity using natural stimuli, however, leaving unknown the changes that accompany learning under more realistic conditions. Here, we examine experience-dependent plasticity in European starlings, a songbird with rich acoustic communication signals tied to robust, natural recognition behaviors. We trained starlings to recognize conspecific songs and recorded the extracellular spiking activity of single neurons in the caudomedial nidopallium (NCM), a secondary auditory forebrain region analogous to mammalian auditory cortex. Training induced a stimulus-specific weakening of the neural responses (lower spike rates) to the learned songs, whereas the population continued to respond robustly to unfamiliar songs. Additional experiments rule out stimulus-specific adaptation and general biases for novel stimuli as explanations of these effects. Instead, the results indicate that associative learning leads to single neuron responses in which both irrelevant and unfamiliar stimuli elicit more robust responses than behaviorally relevant natural stimuli. Detailed analyses of these effects at a finer temporal scale point to changes in the number of motifs eliciting excitatory responses above a neuron's spontaneous discharge rate. These results show a novel form of experience-dependent plasticity in the auditory forebrain that is tied to associative learning and in which the overall strength of responses is inversely related to learned behavioral significance.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3