Triggering of locust jump by multimodal inhibitory interneurons

Author:

Pearson K. G.,Heitler W. J.,Steeves J. D.

Abstract

1. The locust jump is triggered by a sudden inhibition of activity in hindleg flexor tibiae motoneurons following cocontraction of the hindleg flexor and extensor tibiae muscles. The main result of this investigation was the identification of two interneurons (one for each hindleg) that monosynaptically inhibit flexor tibiae motoneurons and whose properties are all consistent with them being the trigger interneurons for initiating a jump. 2. These interneurons receive strong excitatory input from many sensory modalities (visual, auditory, tactile, and proprioceptive). Because of their multimodal response characteristics, we designated them M-neurons. A particularly strong excitatory input to each M-neuron is from both descending contralateral movement detector (DCMD) interneurons. 3. The threshold for spike initiation in the M-neurons is high (approximately 14 mV). As a consequence, input from any one sensory modality alone rarely initiates action potentials. 4. Each M-neuron is depolarized by sensory input from leg proprioceptors. We propose that proprioceptive feedback during the cocontraction phase depolarizes the M-neurons to decrease their threshold, thus enabling extrinsic sensory stimuli to generate action potentials in both M-neurons and in so doing trigger a jump. The function of the proprioceptive gating of inhibitory transmission from the various sensory systems to the flexor motoneurons (via the M-neurons) is to ensure the development of a strong isometric contraction of the extensor tibiae muscle, and thus a powerful jump in response to external stimuli. 5. Insofar as the initiation of the locust jump depends on sensory convergence onto large identified interneurons, this behavior is similar to ballistic movements in some other animals such as the crayfish tail flip and the startle response in fish. The unique feature of the locust jump is that the trigger interneurons initiate the jump only after a preceding phase (cocontraction) has been accomplished.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3