Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats

Author:

Duysens J.,Loeb G. E.

Abstract

1. The modulation of reflex responses in up to 10 simultaneously recorded hindlimb muscles was studied in unrestrained cats walking on a treadmill. Single electrical shocks of various strengths were applied to different skin areas of teh hindlimb at different times of the step cycle while the resulting EMG responses were sampled and analyzed. 2. Two excitatory response peaks (P1 and P2) at a latency of about 10 and 25 ms, respectively, were seen in all flexors examined (sartorius, semitendinosus, tibialis anterior, extensor digitorum longus). Stimulation of most skin areas was effective but responses were most easily obtained from stimuli applied to the foot or ankle. During the step cycle there was a marked modulation of the amplitudes of the responses, especially the P2 responses, which grew larger toward the end of stance when a maximum was reached, followed by a steady decline throughout swing. This pattern was very similar for various flexors, although these muscles differed considerably in their normal EMG activity pattern during walking. 3. Flexor responses were absent when the same stimuli were applied during the early stance phase. Instead, inhibition of the ongoing EMG activity was seen at a latency of 10 ms or less in all extensors examined (semimembranosus, quadriceps, soleus, gastrocnemius medialis, flexor digitorum longus). The inhibition was followed by a late excitatory peak (P3) at about 35-ms latency in all extensors except soleus. 4. Certain stimulation sites yielded exceptions to the above patterns. Stimulation of the skin area innervated by the sural nerve yielded larger and earlier MG excitatory responses as compared to stimulation of other skin areas. Activation of the plantar surface of the foot often failed to elicit P2 responses in the hip flexor sartorius, which showed inhibition instead. 5. In the hindlimb contralateral to the stimulus, excitatory responses occurred both in flexors and extensors at a latency of 20-25 ms. The pattern of modulation of these responses was similar to the ipsilateral modulation of P2 flexor and P3 extensor responses. Soleus failed to show a crossed response. 6. The data indicate that flexor and extensor responses differ both with respect to their latency and to their correlation with the ongoing EMG reactivity. It is concluded that these stimuli do not demonstrate reflex reversal in the strict sense in the normal walking cat but that there is modulation of transmission in a flexor excitatory and extensor inhibitory pathway, possibly by the flexor part of the spinal locomotor oscillator. In addition, there are some specialized flexor inhibitory and extensor excitatory pathways. The slow soleus muscle does not seem to be excited through these pathways.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3