Acoustic Startle Evokes Bilaterally Synchronous Oscillatory EMG Activity in the Healthy Human

Author:

Grosse Pascal12,Brown Peter1

Affiliation:

1. Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1 3BG, United Kingdom

2. Neurologische Klinik und Poliklinik, Charité, Campus Virchow-Klinikum, 13353 Berlin, Germany

Abstract

Despite animal evidence that the reticulospinal system is of major importance to movement, this motor pathway has remained relatively inaccessible to experimentation in the human. Consequently, little is known about its function in health and disease. Here, we use the acoustic startle response to demonstrate that one type of reticulospinal activity in the human is associated with a characteristic pattern of bilateral synchronization between motor units. Surface electromyography (EMG) was recorded from upper limb muscles in 15 healthy subjects during the reflex startle to unexpected acoustic stimulation, voluntary movements mimicking the startle and during sustained voluntary tonic contraction. Frequency analysis demonstrated autospectral peaks at ∼14 Hz in deltoid and biceps muscles only during the startle reflex. Similarly, coherence spectra of the EMG recorded between homologous proximal upper limb muscles demonstrated a peak centered ∼12–16 Hz during reflex startles. Coherence in the 10- to 20-Hz band was significantly greater in the startle reflex than during voluntary sham startles or voluntary tonic contraction for deltoid, but not first dorsal interosseous, muscles. The coherence at 10–20 Hz between EMGs from homologous muscles represents a potential surrogate measure of reticulospinal activity that may be useful in determining the contribution of the reticulospinal system to different types of movement in health and disease.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3