Morphology, Intrinsic Membrane Properties, and Rotation-Evoked Responses of Trochlear Motoneurons in the Turtle

Author:

Jones Michael S.,Ariel Michael

Abstract

Intrinsic properties and rotation-evoked responses of trochlear motoneurons were investigated in the turtle using an in vitro preparation consisting of the brain stem with attached temporal bones that retain functional semicircular canals. Motoneurons were divided into two classes based on intrinsic properties. The first class exhibited higher impedance (123.0 ± 11.0 MΩ), wider spikes (0.99 ± 0.05 ms), a single spike afterhyperpolarization (AHP), little or no spike frequency adaptation (SFA), and anomalous rectification, characterized by an initial “sag” in membrane potential in response to hyperpolarizing current injection. The second class exhibited lower impedance (21.8 ± 2.5 MΩ), narrower spikes (0.74 ± 0.03 ms), a double AHP, substantial SFA, and little or no rectification. Vestibular responses were evoked by horizontal sinusoidal rotation (1/12-1/3 Hz; peak velocity: 30–100°/s). Spiking in higher-impedance cells was recruited earlier in the response and exhibited a more limited dynamic range relative to that of lower impedance cells. Spiking evoked by injecting depolarizing current during rotation was blocked during contraversive motion and was consistent with a shunting inhibition. No morphological features were identified in neurobiotin-filled cells that correlated with the two physiological classes. Recovered motoneurons were multipolar but exhibited a less-complex dendritic morphology than ocular motoneurons of similarly sized mammals. The two physiologically defined cell classes have homologues in other vertebrates, suggesting that intrinsic membrane properties play an important role in oculomotor processing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3