A cGMP-dependent protein kinase (PKG) controls synaptic transmission tolerance to acute oxidative stress at the Drosophila larval neuromuscular junction

Author:

Caplan Stacee Lee1,Milton Sarah L.1,Dawson-Scully Ken1

Affiliation:

1. Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida

Abstract

Increasing evidence demonstrates that modulating the cGMP-dependent protein kinase G (PKG) pathway produces an array of behavioral phenotypes in the fruit fly, Drosophila melanogaster. Altering PKG activity, either genetically via the foraging ( for) gene or using pharmacology modifies tolerance to acute abiotic stresses such as hyperthermia and hypoxia. PKG signaling has been shown to modulate neuroprotection in many experimental paradigms of acute brain trauma and chronic neurodegenerative diseases. However, relatively little is known about how this stress-induced neuroprotective mechanism affects neural communication. In this study, we investigated the role PKG activity has on synaptic transmission at the Drosophila larval neuromuscular junction (NMJ) during acute oxidative stress and found that the application of 2.25 mM hydrogen peroxide (H2O2) disrupts synaptic function by rapidly increasing the rate of neuronal failure. Here, we report that reducing PKG activity through either natural genetic variation or an induced mutation of the for gene increases synaptic tolerance during acute oxidative conditions. Furthermore, pharmacological manipulations revealed that neurotransmission is significantly extended during acute H2O2 exposure upon inhibition of the PKG pathway. Conversely, activation of this signaling cascade using either genetics or pharmacology significantly reduced the time until synaptic failure. Therefore, these findings suggest a potential role for PKG activity to regulate the tolerance of synaptic transmission during acute oxidative stress, where inhibition promotes functional protection while activation increases susceptibility to neurotransmission breakdown.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3