Olfactory Behavior of Swimming C. elegans Analyzed by Measuring Motile Responses to Temporal Variations of Odorants

Author:

Luo Linjiao,Gabel Christopher V.,Ha Heon-Ick,Zhang Yun,Samuel Aravinthan D. T.

Abstract

Caenorhabditis elegans responds to chemical cues using a small number of chemosensory neurons that detect a large variety of molecules in its environment. During chemotaxis, C. elegans biases its migration in spatial chemical gradients by lengthening (/shortening) periods of forward movement when it happens to be moving toward (/away) from preferred locations. In classical assays of chemotactic behavior, a group of crawling worms is placed on an agar plate containing a point source of chemical, the group is allowed to navigate for a period of time, and aggregation of worms near the source is quantified. Here we show that swimming worms exhibit acute motile responses to temporal variations of odor in their surrounding environment, allowing our development of an automated assay of chemotactic behavior with single-animal resolution. By placing individual worms in small microdroplets and quantifying their movements as they respond to the addition and removal of odorized airstreams, we show that the sensorimotor phenotypes of swimming worms (wild-type behavior, the effects of certain mutations, and the effects of laser ablation of specific olfactory neurons) are consistent with aggregation phenotypes previously obtained in crawling assays. The microdroplet swimming assay has certain advantages over crawling assays, including flexibility and precision in defining the stimulus waveform and automated quantification of motor response during stimulus presentation. In this study, we use the microdroplet assay to quantify the temporal dynamics of the olfactory response, the sensitivity to odorant concentration, combinations, and gradients, and the contribution of specific olfactory neurons to overall behavior.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3