Computational modeling of neurons: intensity-duration relationship of extracellular electrical stimulation for changes in intracellular calcium

Author:

Adams Robert D.1,Willits Rebecca K.2,Harkins Amy B.13

Affiliation:

1. Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri;

2. Department of Biomedical Engineering, The University of Akron College of Engineering, Akron, Ohio; and

3. Department of Biomedical Engineering, Saint Louis University, St. Louis, Missouri

Abstract

In many instances of extensive nerve damage, the injured nerve never adequately heals, leaving lack of nerve function. Electrical stimulation (ES) has been shown to increase the rate and orient the direction of neurite growth, and is a promising therapy. However, the mechanism in which ES affects neuronal growth is not understood, making it difficult to compare existing ES protocols or to design and optimize new protocols. We hypothesize that ES acts by elevating intracellular calcium concentration ([Ca2+]i) via opening voltage-dependent Ca2+ channels (VDCCs). In this work, we have created a computer model to estimate the ES Ca2+ relationship. Using COMSOL Multiphysics, we modeled a small dorsal root ganglion (DRG) neuron that includes one Na+ channel, two K+ channels, and three VDCCs to estimate [Ca2+]i in the soma and growth cone. As expected, the results show that an ES that generates action potentials (APs) can efficiently raise the [Ca2+]i of neurons. More interestingly, our simulation results show that sub-AP ES can efficiently raise neuronal [Ca2+]i and that specific high-voltage ES can preferentially raise [Ca2+]i in the growth cone. The intensities and durations of ES on modeled growth cone calcium rise are consistent with directionality and orientation of growth cones experimentally shown by others. Finally, this model provides a basis to design experimental ES pulse parameters, including duration, intensity, pulse-train frequency, and pulse-train duration to efficiently raise [Ca2+]i in neuronal somas or growth cones.

Funder

Office of Extramural Research, National Institutes of Health (OER)

Margaret F. Donovan Endowed Chair for Women in Engineering

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3