Calcium channel subtypes on glutamatergic mossy fiber terminals synapsing onto rat hippocampal CA3 neurons

Author:

Shin Min-Chul1,Nonaka Kiku1,Yamaga Toshitaka1,Wakita Masahito2,Akaike Hironari3,Akaike Norio234

Affiliation:

1. Research Division for Life Science, Kumamoto Health Science University, Kumamoto, Japan

2. Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, Kumamoto, Japan

3. Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, Japan

4. Research Division of Neurophysiology, Kitamoto Hospital, Koshigaya, Saitama, Japan

Abstract

The current electrophysiological study investigated the functional roles of high- and low-voltage-activated Ca2+ channel subtypes on glutamatergic small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons. Experiments combining both the “synapse bouton” preparation and single-pulse focal stimulation technique were performed using the conventional whole cell patch configuration under voltage-clamp conditions. Nifedipine, at a high concentration, and BAY K 8644 inhibited and facilitated the glutamatergic excitatory postsynaptic currents (eEPSCs) that were evoked by 0.2-Hz stimulation, respectively. However, these drugs had no effects on spontaneous EPSCs (sEPSCs). Following the use of a high stimulation frequency of 3 Hz, however, nifedipine markedly inhibited eEPSCs at the low concentration of 0.3 µM. Moreover, ω-conotoxin GVIA and ω-agatoxin IVA significantly inhibited both sEPSCs and eEPSCs. Furthermore, SNX-482 slightly inhibited eEPSCs. R(−)-efonidipine had no effects on either sEPSCs or eEPSCs. It was concluded that glutamate release from SMFTs depends largely on Ca2+ entry through N- and P/Q-type Ca2+ channels and, to a lesser extent, on R-type Ca2+ channels. The contribution of L-type Ca2+ channels to eEPSCs was small at low-firing SMFTs but more significant at high-firing SMFTs. T-type Ca2+ channels did not appear to be involved in neurotransmission at SMFTs. NEW & NOTEWORTHY Action potential-evoked glutamate release from small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons is regulated by high-threshold but not low-threshold Ca2+ channel subtypes. The functional contribution mainly depends on N- and P/Q-type Ca2+ channels and, to a lesser extent, on R-type Ca2+ channels. However, in SMFTs stimulated at a high 3-Hz frequency, L-type Ca2+ channels contributed significantly to the currents. The present results are consistent with previous findings from fluorometric studies of large mossy fiber boutons.

Funder

JSPS KAKENHI

Kumamoto Health Science University

Kumamoto Kinoh Hospital

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3