The potential for understanding the synaptic organization of human motor commands via the firing patterns of motoneurons

Author:

Johnson Michael D.1,Thompson Christopher K.2,Tysseling Vicki M.13,Powers Randall K.4,Heckman Charles J.153

Affiliation:

1. Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;

2. Department of Physical Therapy, Temple University, Philadelphia, Pennsylvania; and

3. Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;

4. Department of Physiology and Biophysics, University of Washington, Seattle, Washington

5. Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;

Abstract

Motoneurons are unique in being the only neurons in the CNS whose firing patterns can be easily recorded in human subjects. This is because of the one-to-one relationship between the motoneuron and muscle cell behavior. It has long been appreciated that the connection of motoneurons to their muscle fibers allows their action potentials to be amplified and recorded, but only recently has it become possible to simultaneously record the firing pattern of many motoneurons via array electrodes placed on the skin. These firing patterns contain detailed information about the synaptic organization of motor commands to the motoneurons. This review focuses on parameters in these firing patterns that are directly linked to specific features of this organization. It is now well established that motor commands consist of three components, excitation, inhibition, and neuromodulation; the importance of the third component has become increasingly evident. Firing parameters linked to each of the three components are discussed, along with consideration of potential limitations in their utility for understanding the underlying organization of motor commands. Future work based on realistic computer simulations of motoneurons may allow quantitative “reverse engineering” of human motoneuron firing patterns to provide good estimates of the relative amplitudes and temporal patterns of all three components of motor commands.

Funder

Craig S Nielsen Foundation

NIH

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3