Using a Common Average Reference to Improve Cortical Neuron Recordings From Microelectrode Arrays

Author:

Ludwig Kip A.,Miriani Rachel M.,Langhals Nicholas B.,Joseph Michael D.,Anderson David J.,Kipke Daryl R.

Abstract

In this study, we propose and evaluate a technique known as common average referencing (CAR) to generate a more ideal reference electrode for microelectrode recordings. CAR is a computationally simple technique, and therefore amenable to both on-chip and real-time applications. CAR is commonly used in EEG, where it is necessary to identify small signal sources in very noisy recordings. To study the efficacy of common average referencing, we compared CAR to both referencing with a stainless steel bone-screw and a single microelectrode site. Data consisted of in vivo chronic recordings in anesthetized Sprague-Dawley rats drawn from prior studies, as well as previously unpublished data. By combining the data from multiple studies, we generated and analyzed one of the more comprehensive chronic neural recording datasets to date. Reference types were compared in terms of noise level, signal-to-noise ratio, and number of neurons recorded across days. Common average referencing was found to drastically outperform standard types of electrical referencing, reducing noise by >30%. As a result of the reduced noise floor, arrays referenced to a CAR yielded almost 60% more discernible neural units than traditional methods of electrical referencing. CAR should impart similar benefits to other microelectrode recording technologies—for example, chemical sensing—where similar differential recording concepts apply. In addition, we provide a mathematical justification for CAR using Gauss-Markov theorem and therefore help place the application of CAR into a theoretical context.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3