Affiliation:
1. Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
Abstract
Regulation of feeding behavior involves the integration of multiple physiological and neurological pathways that control both nutrient-seeking and consummatory behaviors. The consummatory phase of ingestion includes stereotyped oromotor movements of the tongue and jaw that are controlled through brain stem pathways. These pathways encompass not only cranial nerve sensory and motor nuclei for processing feeding-related afferent signals and supplying the oromotor musculature but also reticular neurons for orchestrating ingestion and coordinating it with other behaviors that utilize the same musculature. Based on decerebrate studies, this circuit should be sensitive to satiety mechanisms mediated centrally by A2 noradrenergic neurons in the caudal nucleus of the solitary tract (cNST) that are potently activated during satiety. Because the first observable phase of satiety is inhibition of oromotor movements, we hypothesized that norepinephrine (NE) would act to inhibit prehypoglossal neurons in the medullary reticular formation. Using patch-clamp electrophysiology of retrogradely labeled prehypoglossal neurons and calcium imaging to test this hypothesis, we demonstrate that norepinephrine can influence both pre- and postsynaptic properties of reticular neurons through both α1- and α2-adrenoreceptors. The α1-adrenoreceptor agonist phenylephrine (PE) activated an inward current in the presence of TTX and increased the frequency of both inhibitory and excitatory miniature postsynaptic currents. The α2-adrenoreceptor agonist dexmedetomidine (DMT) inhibited cNST-evoked excitatory currents as well as spontaneous and miniature excitatory currents through presynaptic mechanisms. The diversity of adrenoreceptor modulation of these prehypoglossal neurons may reflect their role in a multifunctional circuit coordinating both ingestive and respiratory lingual function.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献