Author:
Brocard Frédéric,Verdier Dorly,Arsenault Isabel,Lund James P.,Kolta Arlette
Abstract
There is increasing evidence that a subpopulation of neurons in the dorsal principal sensory trigeminal nucleus are not simple sensory relays to the thalamus but may form the core of the central pattern generating circuits responsible for mastication. In this paper, we used whole cell patch recordings in brain stem slices of young rats to show that these neurons have intrinsic bursting abilities that persist in absence of extracellular Ca2+. Application of different K+ channel blockers affected duration and firing rate of bursts, but left bursting ability intact. Bursting was voltage dependent and was abolished by low concentrations of Na+ channel blockers. The proportion of bursting neurons increased dramatically in the second postnatal week, in parallel with profound changes in several electrophysiological properties. This is the period in which masticatory movements appear and mature. Bursting was associated with the development of an afterdepolarization that depend on maturation of a persistent sodium conductance ( INaP). An interesting finding was that the occurrence of bursting and the magnitude of INaP were both modulated by the extracellular concentration of Ca2+. Lowering extracellular [Ca2+] increased both INaP and probability of bursting. We suggest that these mechanisms underlie burst generation in mastication and that similar processes may be found in other motor pattern generators.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献