Discrimination of orientation and position disparities by binocularly activated neurons in cat straite cortex

Author:

Nelson J. I.,Kato H.,Bishop P. O.

Abstract

1. We have examined and compared the ability of binocularly activated striate neurons to make both position disparity and orientation disparity discrimination in the anesthetized (N2O/O2) and paralyzed cat preparation. 2. Accurate knowledge of eye position is essential for disparity studies. Using a retinal projection technique able to detect eye drifts of less than 3' arc per retinal landmark and less than 18' arc cyclorotation disparity, we determined eye drift during the course of 2- to 4-day experiments. After the initial eye rotation due to the anesthesia and the onset of paralysis (see below), rotational drift thereafter was mainly excyclorotatory and, from all causes, rarely totaled more than 4 degrees disparity. All our data have been corrected for this residual cyclorotatory drift. 3. Optimal stimulus orientation disparities were determined from quantitative monocular orientation tuning curves for 74 binocularly activated striate cells (37 simple, 3 hypercomplex I, 31 complex, 3 hypercomplex II) from nine cats. Without exception, the mean optimal stimulus orientation disparity in each of our animals showed a departure from zero disparity equivalent to an incyclorotation of the eyes (mean, 9.2 degrees; range, 2.7 degrees-15.9 degrees). 4. We attribute this mean optimal stimulus orientation disparity shift to ocular cyclorotation as a result of the initial anesthesia and paralysis. Assuming equal intortion, incyclorotation for each eye averages 4.6 degrees. On the assumption that the mean optimal stimulus orientation disparity is zero in normal life, we pooled results from the nine animals about their individual means. For the 74 cells the resulting distribution of the optimal stimulus orientation disparities had a range of about +/-15 degrees (simple cells: SD 4.9 degrees; complex cells: SD 7.4 degrees). 5. We examined the relationship of the sharpness of the orientation tuning curves to ocular dominance, to absolute orientation preference, and to other unit properties. The striking observation was the high correlation between the sharpness of orientation tuning curves for the two eyes of a binocular neuron. For simple cells the mean difference for the half-widths of half-height was only 2.54 degrees, with sharpness showing a high correlation between the two eyes (r=0.915) over half-width at half-heights ranging from 8.5 degrees to 41.8 degrees. Complex cells showed a similar, albeit weaker, correlation. 6. Having shown that, assessed monocularly binocular units show different orientation tunings in the two eyes, we undertook binocular experiments to ascertain if these differences were the optimal disparities of sharply tuned stimulus orientation disparity channels. Using a matrix stimulation paradigm to minimize the effects of spontaneous changes in responsiveness, we have simultaneously extracted bionocular stimulus orientation disparity and position disparity tuning curves from single striate neurons...

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3