Isoflurane, ketamine-xylazine, and urethane markedly alter breathing even at subtherapeutic doses

Author:

Massey Cory A.12,Richerson George B.1234

Affiliation:

1. Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa;

2. Department of Neurology, University of Iowa, Iowa City, Iowa;

3. Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; and

4. Veterans Affairs Medical Center, Iowa City, Iowa

Abstract

Anesthetics are widely used for animal research on respiratory control in vivo, but their effect on breathing and CO2 chemoreception has not been well characterized in mice, a species now often used for these studies. We previously demonstrated that 1% isoflurane markedly reduces the hypercapnic ventilatory response (HCVR) in adult mice in vivo and masks serotonin [5-hydroxytryptamine (5-HT)] neuron chemosensitivity in vitro. Here we investigated effects of 0.5% isoflurane on breathing in adult mice and also found a large reduction in the HCVR even at this subanesthetic concentration. We then tested the effects on breathing of ketamine-xylazine and urethane, anesthetics widely used in research on breathing. We found that these agents altered baseline breathing and blunted the HCVR at doses within the range typically used experimentally. At lower doses ventilation was decreased, but mice appropriately matched their ventilation to metabolic demands due to a parallel decrease in O2 consumption. Neither ketamine nor urethane decreased chemosensitivity of 5-HT neurons. These results indicate that baseline breathing and/or CO2 chemoreception in mice are decreased by anesthetics widely viewed as not affecting respiratory control, and even at subtherapeutic doses. These effects of anesthetics on breathing may alter the interpretation of studies of respiratory physiology in vivo. NEW & NOTEWORTHY Anesthetics are frequently used in animal research, but their effects on physiological functions in mice have not been well defined. Here we investigated the effects of commonly used anesthetics on breathing in mice. We found that all tested anesthetics significantly reduced the hypercapnic ventilatory response (HCVR), even at subtherapeutic doses. In addition, ketamine-xylazine and urethane anesthesia altered baseline breathing. These data indicate that breathing and the HCVR in mice are highly sensitive to anesthetic modulation.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3