Author:
Rheims Sylvain,Minlebaev Marat,Ivanov Anton,Represa Alfonso,Khazipov Rustem,Holmes Gregory L.,Ben-Ari Yehezkel,Zilberter Yuri
Abstract
GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential ( Em), reversal potential of GABA ( EGABA), and threshold of action potential generation ( Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and EGABA in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2–P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5–P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl−]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献