Deficits in Saccades and Fixation During Muscimol Inactivation of the Caudal Fastigial Nucleus in the Rhesus Monkey

Author:

Goffart Laurent,Chen Longtang L.,Sparks David L.

Abstract

The caudal fastigial nucleus (cFN) is a major nucleus by which the cerebellum influences the accuracy of saccades. In head-restrained monkeys generating saccades from a fixation light-emitting diode (LED) toward a flashed target LED, we analyzed the effects of unilateral pharmacological inactivation of cFN on horizontal, vertical, and oblique saccades. When animals were viewing the fixation LED, usually after one or more correction saccades, the positions of the eyes were slightly offset in comparison with the positions maintained before the injection (average offset = 1.1°). The offset was ipsilateral to the injected side and did not depend on the target location. The horizontal component of all ipsilesional saccades was hypermetric and associated with a 32–42% increase in the amplitude of the deceleration displacement without significant change in the amplitude of the acceleration displacement. The horizontal component of all contralesional saccades was hypometric and associated with a decrease in the peak velocity and in the acceleration amplitude (30–35% decrease) without significant change in the deceleration amplitude. The amplitude of vertical saccades was not systematically affected, but their trajectory was always deviated toward the injected side. They missed the target with an error that depended on saccade duration or amplitude. If any, the effects of muscimol injections on the vertical component of oblique saccades were very small. The changes in fixation and the dysmetria are both viewed as consequences of an impairment in the cFN bilateral influence on the burst neurons located in the left and right brain stem.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3