Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties

Author:

Cardenas C. G.1,Del Mar L. P.1,Scroggs R. S.1

Affiliation:

1. University of Tennessee, College of Medicine, Department of Anatomyand Neurobiology, Memphis 38163, USA.

Abstract

1. Rat dorsal root ganglion (DRG) cell bodies were screened according to action potential (AP) duration, capsaicin sensitivity, expression of IH, IA, and N-, L-, and T-type Ca2+ channel currents. AP duration was measured at half of total amplitude at a membrane potential of -60 mV. Sensitivity to capsaicin was defined as production of an inward current at a holding potential (HP) of -60 mV by 1 microM capsaicin. IH was evoked by a 787-ms hyperpolarization to -110 mV from an HP of -60 mV. IA was evoked by repolarization to -60 mV after a 787-ms hyperpolarization to -110 mV. High-threshold Ca2+ channel current was evoked by a depolarization to -10 or 0 mV from an HP of -60 mV, and L- and N-type Ca2+ channel current was fractionated using selective Ca2+ channel blockers (nimodipine and omega-conotoxin GVIA). T-type Ca2+ channel current was evoked by a depolarization to -40 mV from an HP of -90 mV. Ninety-seven of the 116 DRG cells studied fit closely into one of four categories based on expression of the above characteristics. These four categories, referred to as types 1-4, are described below. 2. Type 1 DRG cells (soma diameter 24.6 +/- 0.5 microns, mean +/- SE; n = 34) had long-duration APs (average = 9.8 ms) with a prominent shoulder on the falling limb and were capsaicin sensitive. Significant IH or IA was not expressed. High-threshold Ca2+ channel current was on average 28% omega-conotoxin GVIA sensitive (N-type) and 46% nimodipine sensitive (L-type); 26% was resistant to both blockers (resistant). T-type Ca2+ channel currents averaged 245 pA. 3. Type 2 DRG cells (soma diameter 25.2 +/- 0.9 microns, n = 19) had short-duration APs (average = 2.9 ms) with a small shoulder on the falling limb and were capsaicin sensitive. IH was negligible but IA averaged 184 pA. High-threshold Ca2+ channel current averaged 42% N-type, 23% L-type, and 35% resistant. T-type Ca2+ channel currents averaged 47 pA. 4. Type 3 DRG cells (soma diameter 18.6 +/- 0.8 microns, n = 21) had short-duration APs (average = 1.8 ms) and were insensitive to capsaicin. IA was not expressed but IH averaged 147 pA. High-threshold Ca2+ channel current averaged 27% N-type, 44% L-type, and 29% resistant. T-type Ca2+ channel currents averaged 306 pA. 5. Type 4 DRG cells (soma diameter 33.9 +/- 0.4 microns, n = 23) had short-duration APs (average = 1.1 ms) and were capsaicin insensitive. IA was not expressed but IH averaged 810 pA. High-threshold Ca2+ channel current was 16% N-type, 4% L-type, and 80% resistant. T-type Ca2+ channel currents averaged 4,031 pA. 6. There was a large variation in the inhibition of high-threshold Ca2+ channel currents by serotonin (5-HT) and (+)8-OH-DPAT in type 1 DRG cells versus types 2-4. On average, 5-HT (10 microM) inhibited high-threshold Ca2+ channel current by an average of 42% in type 1 DRG cells, compared with 15%, 18%, and 7% inhibition in types 2-4, respectively. Similarly, (+)8-OH-DPAT (1 microM) inhibited high-threshold Ca2+ channel current by an average of 35% in type 1 DRG cells, compared with 5%, 8%, and 3% inhibition in types 2-4, respectively. 7. It is possible that DRG cells that vary in their expression of membrane properties may represent sensory neurons that transmit different types of sensory information. Thus the variation in inhibition of Ca2+ channel current by 5-HT and (+)8-OH-DPAT in the above categories of DRG cells may indicate that 5-HT1A receptor activation inhibits Ca2+ entry into some types of DRG sensory neurons more than others.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3