Unmyelinated nociceptors of rat paraspinal tissues

Author:

Bove G. M.1,Light A. R.1

Affiliation:

1. Department of Cell Biology, University of North Carolina at ChapelHill 27599, USA.

Abstract

1. We made recordings from rat dorsal root filaments to study unmyelinated afferent units (conduction velocity < or = 1.5 m/s) associated with deep paraspinal tissues of the dorsal sacrum and proximal tail. Data from 57 unmyelinated units were analyzed in 47 experiments. Receptive fields were identified in intact animals and then surgically isolated using microdissection. Units were characterized using mechanical, noxious chemical, and thermal stimuli. 2. These recordings revealed innervation of the nerve sheaths and surrounding connective tissue, muscles, tendons, and tissue apposed to the undersurface of the skin. No units were found with receptive fields directly on joint capsular tissue. The receptive fields of the units were often multiple and located in more than one tissue; 31 of 57 units showed convergence from different tissues. 3. The units with receptive fields on neurovascular bundles shared sensitivities with other deep tissue units described in this and other reports. These units may have clinical importance in pain due to peripheral neuropathies. 4. The units initially responded to strong mechanical stimulation of the intact animal and often to noxious stretch of the tail. Once surgically isolated, an individual unit's threshold to mechanical stimuli appeared lower. 5. Capsaicin (0.001%-0.1%) elicited responses in 81% (17 of 21) of the units tested. Bradykinin (20 micrograms/ml) elicited responses in 45% (10 of 22) of the units tested. Noxious cold (4-10 degrees C) and hot (55 degrees C) stimulation elicited discharges from 33% (5 of 15) and 25% (5 of 20) of the units tested, respectively. 6. The unmyelinated units had similar mechanical, chemical, and thermal sensitivities. These similarities and the observed convergence only allowed separation of units by the tissue in which the ending was found, and did not allow further classification. 7. The prevalence of background discharge suggested that many units were sensitized during the experiments. 8. The sensitivities of these paraspinal units were similar to those reported for other tissues. Because of the anatomic similarity of the paraspinal tissues of the proximal tail and the lumbar spine, the conclusions of the present study can be related to the lumbar spine. These afferent units are thought to participate in nociception from the deep paraspinal tissues.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3