Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences

Author:

Joris P. X.1,Yin T. C.1

Affiliation:

1. Department of Neurophysiology, University of Wisconsin Medical School,Madison 53706, USA.

Abstract

1. Interaural level differences (ILDs), created by the head and pinna, have long been known to be the dominant acoustic cue for azimuthal localization of high-frequency tones. However, psychophysical experiments have demonstrated that human subjects can also lateralize complex high-frequency sounds on the basis of interaural time differences (ITDs) of the signal envelope. The lateral superior olive (LSO) is one of two pairs of binaural nuclei where the primary extraction of binaural cues for sound source location occurs. "IE" cells in LSO are inhibited by stimuli to the contralateral and excited by stimuli to the ipsilateral ear, and their response rate is therefore dependent on ILD. Anatomic specializations in the afferent pathways to the LSO suggest that this circuit also has a function in the detection of timing cues. We hypothesized that, besides ILD sensitivity, the IE property also conveys a sensitivity to ITDs of amplitude-modulated (AM) tones and could provide the physiological substrate for the psychophysical effect mentioned above. 2. In extracellular recordings from binaural LSO cells in barbiturate-anesthetized cats, response rate was a periodic function of ITDs of AM stimuli, i.e., all cells displayed ITD sensitivity. Binaural responses were smaller than responses to stimulation of the ipsilateral ear alone and were minimal when the envelopes in both ears were in-phase or nearly so. There was good correspondence between responses to ITDs and to dynamic interaural phase differences (IPDs), created by a difference in the envelope frequency to the two ears. Qualitatively, the responses were consistent with the outcome of an IE operation on temporally structured inputs. 3. To compare the relative importance of ILD and ITD, responses to combinations of the two cues were obtained. Despite robust ITD sensitivity in all binaural LSO cells encountered, the changes in response rate that would occur in response to naturally occurring ITDs were small in comparison with the changes expected for naturally occurring ILDs. The main limitation on ITD sensitivity was a steep decline in average discharge rate as the modulation frequency exceeded several hundred Hertz. 4. ITD sensitivity was also present to broadband stimuli, again with minimal rates occurring near 0 ITD. The sensitivity depended in a predictable fashion on the passband of filtered noise and was absent to binaurally uncorrelated noise bands. In response to clicks, ILDs interacted with ITD in a complicated fashion involving amplitude and latency effects. 5. Three low-characteristic frequency (CF) LSO cells were encountered that were IE and showed ITD sensitivity to the fine structure of low-frequency stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3