Affiliation:
1. Sensory Motor Performance Program, Rehabilitation Institute ofChicago, Illinois, USA.
Abstract
1. Potential mechanisms for controlling stabilization of the head and neck include voluntary movements, vestibular (VCR) and proprioceptive (CCR) neck reflexes, and system mechanics. In this study we have tested the hypothesis that the relative importance of those mechanisms in producing compensatory actions of the head-neck motor system depends on the frequency of an externally applied perturbation. Angular velocity of the head with respect to the trunk (neck) and myoelectric activity of three neck muscles were recorded in seven seated subjects during pseudorandom rotations of the trunk in the horizontal plane. Subjects were externally perturbed with a random sum-of-sines stimulus at frequencies ranging from 0.185 to 4.11 Hz. Four instructional sets were presented. Voluntary mechanisms were examined by having the subjects actively stabilize the head in the presence of visual feedback as the body was rotated (VS). Visual feedback was then removed, and the subjects attempted to stabilize the head in the dark as the body was rotated (NV). Reflex mechanisms were examined when subjects performed a mental arithmetic task during body rotations in the dark (MA). Finally, subjects performed a voluntary head tracking task while the body was kept stationary (VT). 2. Gains and phases of head velocity indicated good compensation to the stimulus in VS and NV at frequencies < 1 Hz. Gains dropped and phases advanced between 1 and 2 Hz, suggesting interference between neural and mechanical components. Above 3 Hz, the gains of head velocity increased steeply and exceeded unity, suggesting the emergence of mechanical resonance.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献