Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related neuropeptide, in Ascaris suum

Author:

Bowman J. W.1,Winterrowd C. A.1,Friedman A. R.1,Thompson D. P.1,Klein R. D.1,Davis J. P.1,Maule A. G.1,Blair K. L.1,Geary T. G.1

Affiliation:

1. Upjohn Laboratories, Upjohn Company, Kalamazoo, Michigan 49001,USA.

Abstract

1. The physiological effects of two Phe-Met-Arg-Phe-NH2 (FMRFamide)-related neuropeptides isolated from the free-living nematode Panagrellus redivivus, SDPNFLRFamide (PF1) and SADPNFLRFamide (PF2), were examined using neuromuscular preparations from the parasitic nematode Ascaris suum. 2. PF1 and PF2 hyperpolarized muscle membrane and induced sustained flaccid paralysis, independent of external Cl-, in both innervated and denervated preparations. 3. PF1 reversed spastic contractions induced by the cholinomimetic levamisole, elevated K+, or the excitatory nematode FMRFamide-related neuropeptides KNEFIRFamide or KHEYLRFamide. 4. PF1 reversal of levamisole contraction was blocked by pretreatment with agents that interfere with nitric oxide (NO) synthesis (e.g., N-nitro-L-arginine), whereas sodium nitroprusside, which releases NO in solution, mimicked PF1 and PF2. 5. NO synthase activity, monitored by the conversion of [3H]arginine to [3H]citrulline, was twice as abundant in A. suum hypodermis as in muscle, but was not present in reproductive tissue. The relative abundance of NO synthase activity in these tissues was similar to the observed specific binding of [3H]PF1. 6. These results suggest that the inhibitory effects of PF1 and PF2 on nematode somatic muscle are mediated by NO, and that the hypodermis may serve a role in this process analogous to that of the endothelium in vertebrate vasculature.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3