Do neurons from rat neostriatum express both a TTX-sensitive and a TTX-insensitive slow Na+ current?

Author:

Chao T. I.1,Alzheimer C.1

Affiliation:

1. Department of Physiology, University of Munich, Germany.

Abstract

1. The properties of a tetrodotoxin (TTX)-sensitive, persistent Na+ current and a purported TTX-insensitive slow Na+ current were studied in acutely isolated neurons from rat neostriatum with the use of the whole cell configuration of the patch-clamp technique. 2. A TTX-sensitive, persistent Na+ current (INaP) was activated positive to -60 mV and reached a peak amplitude of -40 to -120 pA at about -40 mV. As indicated by slow depolarizing voltage ramps, activation of INaP did not require preceding activation of the fast, rapidly inactivating Na+ current. 3. The current-voltage (I-V) relationship of INaP displayed an unexpected inflection after passing through its peak value near -40 mV. Between -40 and -10 mV, INaP declined more rapidly with depolarization than it did at more depolarized potentials. The corresponding conductance (GNaP) peaked at -40 mV and declined to a smaller limiting value at potentials positive to about -10 mV. 4. This behavior is not consistent with the notion that INaP arises solely from a bell-shaped window conductance that results from the overlapping steady-state activation and inactivation curves of the fast Na+ current in a narrow voltage range, nor with the notion that INaP is generated by a single uniform conductance independent of the fast Na+ current. 5. In addition to INaP, a second slow inward current (IS) was evoked when small monovalent cations were omitted from the internal solution. INaP and IS were present both in cells resembling medium spiny neurons and in cells resembling aspiny interneurons. 6. IS was insensitive to TTX (1.2 microM) and the Ca2+ channel blocker, cadmium.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3