Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat

Author:

Di Lorenzo P. M.1,Monroe S.1

Affiliation:

1. Department of Psychology, State University of New York at Binghamton13902-6000, USA.

Abstract

1. Previous work has revealed a pervasive influence of the gustatory neocortex (GN) on the electrophysiological responses to taste in the parabrachial nucleus of the pons (PbN), the second synapse in the central pathway for gustation. Subsequent experiments have further suggested that direct projections from the GN to the PbN are not sufficiently dense to account for the widespread effects of cortical input. Because the main source of input to the PbN, i.e., the nucleus of the solitary tract (NTS), also receives input from the GN, the present experiment was conducted to test the hypothesis that changes in taste responses in the PbN after temporary elimination of GN input may be a normal reaction to altered input originating in the NTS. 2. Fourty-three taste-responsive neurons in the NTS were isolated initially in urethan-anesthetized rats. Single units were then classified as "relay" (n = 12) or "nonrelay" (n = 13) on the basis of their electrophysiological response to electrical shocks delivered to the taste-responsive portion of the PbN. After histological analyses, 18 units were classified as "unknown" because the PbN stimulating electrode was found to be outside the anatomically defined taste area in the pons. 3. Electrophysiological responses to sapid solutions of the NaCl (0.1 M), HCl (0.01 M), quinineHCl (0.01 M), sucrose (0.5 M), and Na-saccharin (0.004 M) were then recorded before and after recovery from infusions of procaineHCl into the GN. Both the ipsilateral and contralateral sides of the GN, in that order, received procaine infusions separated by a recovery period of at least 45 min. 4. Analysis of across-unit patterns of response was accomplished with the use of a vector space analysis. With this approach, the response of a given neuron to a given tastant is considered as a coordinate in n-dimensional space, where n is the number of neurons tested. The responses to each stimulus generate vectors whose length relates to the overall magnitude of response across the sample and whose relative directionality indicates similarity to other across-unit patterns. Measures derived from this type of analysis were used as input in a multidimensional scaling (MDS) analysis designed to summarize the organization of the across-unit patterns of response generated by the taste stimuli. This type of analysis creates a "taste space" in which similar across-unit patterns of response are placed close together and dissimilar patterns are placed far apart.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3