Contraction-induced excitation in cat peroneal motoneurons

Author:

Kouchtir N.1,Perrier J. F.1,Zytnicki D.1,Jami L.1

Affiliation:

1. Centre National de la Recherche Scientifique URA 1448, Universite ReneDescartes, UFR Biomedicale, Paris, France.

Abstract

1. Motoneurons innervating peroneal muscles were recorded intracellularly in anesthetized cats during sustained submaximal isometric contractions of peroneus brevis produced by repetitive electrical stimulation of motor axons in the distal portion of cut ventral root filaments. 2. In contrast with the inhibition previously observed during contractions of gastrocnemius medialis muscle in triceps surae motoneurons, the afferent input generated by peroneus brevis contraction elicited excitatory potentials in nearly all motoneurons supplying peroneus brevis, peroneus tertius, or peroneus longus muscles. 3. We ascribed the contraction-induced excitation of peroneal motoneurons to spindle afferents for two reasons. First, the amplitude of contraction-induced excitatory potentials increased when the ventral root stimulation strength was increased to recruit gamma-axons. Second, with stimulation strengths under gamma-threshold, peroneus brevis contraction still excited peroneal motoneurons, and we obtained evidence that activation of spindles by skeletofusimotor beta-axons could account at least partly for this excitation. 4. The lack of contraction-induced inhibition in peroneal motoneurons and the prevalence of contraction-induced excitation raised the possibility that, in contrast to the usual effects of tendon organ afferents, Ib afferents from peroneus brevis might exert an excitatory influence on homonymous motoneurons. The fact that electrical stimulation of group I afferents in the nerve to peroneus brevis only exceptionally evoked inhibition in peroneal motoneurons would appear compatible with this hypothesis. Furthermore, stimulation of cutaneous afferents, known to facilitate transmission in Ib pathways, only exceptionally revealed a weak contraction-induced inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3