Activities of spinal neurons during brain stem-dependent fictive swimming in lamprey

Author:

Buchanan J. T.1,Kasicki S.1

Affiliation:

1. Department of Biology, Marquette University, Milwaukee, Wisconsin53233, USA.

Abstract

1. We made intracellular microelectrode recordings of membrane potential from spinal neurons during fictive swimming elicited by brief electrical shocks to the spinal cord in a brain stem-spinal cord preparation of the adult silver lamprey (Ichthyomyzon unicuspis). 2. We characterized membrane potential activities recorded during brain stem-dependent fictive swimming in five spinal cell types: myotomal motoneurons, lateral interneurons (inhibitory neurons with ipsilateral descending axons), CC interneurons (neurons with contralateral and caudal projecting axons), edge cells (intraspinal stretch receptors), and dorsal cells (primary mechanosensory neurons with cell bodies in the spinal cord). The membrane potential activities were compared with data from previous reports recorded during fictive swimming in the isolated spinal cord with fictive swimming induced by superfusion with D-glutamate. 3. Compared with the same cell types recorded during D-glutamate-induced fictive swimming in brain stem-dependent fictive swimming, the motoneurons and CC interneurons had significantly larger trough-to-peak amplitudes of membrane potential oscillations, whereas lateral interneurons were not significantly different in amplitude. The timings of the membrane potential oscillations and of cell spiking were not significantly different in the two preparations, with the exception that motoneurons in brain stem-dependent fictive swimming were significantly earlier by approximately 10% of a cycle. Edge cells had only weak or no oscillatory activities, and dorsal cells had no detectable input during brain stem-dependent fictive swimming. These findings are similar to those in D-glutamate-induced fictive swimming.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3