Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat

Author:

Bragin A.1,Jando G.1,Nadasdy Z.1,van Landeghem M.1,Buzsaki G.1

Affiliation:

1. Center for Molecular and Behavioral Neuroscience, Rutgers, StateUniversity of New Jersey, Newark 07102, USA.

Abstract

1. This paper describes two novel population patterns in the dentate gyrus of the awake rat, termed type 1 and type 2 dentate spikes (DS1, DS2). Their cellular generation and spatial distribution were examined by simultaneous recording of field potentials and unit activity using multiple-site silicon probes and wire electrode arrays. 2. Dentate spikes were large amplitude (2-4 mV), short duration (< 30 ms) field potentials that occurred sparsely during behavioral immobility and slow-wave sleep. Current-source density analysis revealed large sinks in the outer (DS1) and middle (DS2) thirds of the dentate molecular layer, respectively. DS1 and DS2 had similar longitudinal, lateral, and interhemispheric synchrony. 3. Dentate spikes invariably were coupled to synchronous population bursts of putative hilar interneurons. CA3 pyramidal cells, on the other hand were suppressed during dentate spikes. 4. After bilateral removal of the entorhinal cortex, dentate spikes disappeared, whereas sharp wave-associated bursts, reflecting synchronous discharge of the CA3-CA1 network, increased several fold. 5. These physiological characteristics of the dentate spikes suggest that they are triggered by a population burst of layer II stellate cells of the lateral (DS1) and medial (DS2) entorhinal cortex. 6. We suggest that dentate spike-associated synchronized bursts of hilar-region interneurons provide a suppressive effect on the excitability of the CA3-CA1 network in the intact brain.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3