Inwardly rectifying currents of saccular hair cells from the leopard frog

Author:

Holt J. R.1,Eatock R. A.1

Affiliation:

1. Department of Physiology, University of Rochester, New York 14642,USA.

Abstract

1. Inwardly rectifying currents were characterized in sensory hair cells isolated from the saccules of leopard frogs, using the whole cell configuration of the patch-clamp technique in voltage-clamp mode. 2. Two types of inwardly rectifying currents were distinguishable based on their ionic selectivity, activation and deactivation kinetics, voltage dependence, dependence on external K+ and sensitivity to divalent cations. 3. One inwardly rectifying current displayed K+ selectivity, rapid monoexponential activation (tau approximately 1 ms at -120 mV), steep voltage dependence, dependence of the activation voltage range on external K+ and block by external Ba2+. We refer to this current as IK1, consistent with the terminology used for a similar current in cardiac cells. In 5 mM external K+, IK1 activated negative to -60 mV, was half-activated at -86 mV and fully activated by -110 mV. 4. The other inwardly rectifying current was a mixed K+/Na+ current with slow sigmoidal activation (slow tau approximately 100 ms at -120 mV) and deactivation, shallow voltage dependence and no dependence of the activation curve on external K+ and which was blocked by external Cd2+. This current was called Ih because of its similarities to Ih of photoreceptors. Ih activated negative to -50 mV, was half-activated at -90 mV and was fully activated at -130 mV. 5. A correlation between cell shape and the type of inwardly rectifying current was noted; the more spherical cells had Ih alone and the more cylindrically shaped cells had Ih and IK1. 6. The mean resting potential of 115 cells with IK1 and Ih was -68 +/- 0.5 mV (mean +/- SE) and that of 53 cells with Ih alone was -50 +/- 0.5 mV. This suggests that IK1 contributes to the more negative resting potential of the cylindrical cells. 7. In current-clamp mode, the voltage responses to current steps of the two cell populations differed. Small negative current steps evoked faster, smaller responses in cells with IK1 and Ih than in cells with Ih alone. In cells with Ih alone, long (> 100 ms) negative current steps evoked a hyperpolarization that partly repolarized as Ih activated. Cells with Ih alone showed electrical resonance at rest whereas cells with IK1 resonated only in response to positive current steps. 8. A model developed to explain electrical resonance in bullfrog saccular hair cells was adapted to include Ih or IK1 and Ih.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3