Mechanisms controlling human head stabilization. II. Head-neck characteristics during random rotations in the vertical plane

Author:

Keshner E. A.1,Cromwell R. L.1,Peterson B. W.1

Affiliation:

1. Sensory Motor Performance Program, Rehabilitation Institute ofChicago, Illinois, USA.

Abstract

1. In this study we have tested the hypothesis that the mechanisms controlling stabilization of the head-neck motor system can vary with both the frequency and spatial orientation of an externally applied perturbation. Angular velocity of the head with respect to the trunk (neck) and myoelectric activity of two neck muscles (semispinalis capitis and sternocleidomastoid) were recorded in eight seated subjects during pseudorandom rotations of the trunk in the vertical (pitch) plane. Subjects were externally perturbed with a random sum-of-sines stimulus at frequencies ranging from 0.35 to 3.05 Hz. Four instructional sets were presented. Voluntary mechanisms were examined by having the subjects actively stabilize the head in the presence of visual feedback as the body was rotated (VS). Visual feedback was then removed, and the subjects attempted to stabilize the head in the dark as the body was rotated (NV). Reflex mechanisms were examined when subjects performed a mental arithmetic task during body rotations in the dark (MA). Finally, subjects performed a voluntary head tracking task while the body was kept stationary (VT). 2. In VS and NV, gains and phases of head velocity indicated good compensation for the perturbation at frequencies up to 2 Hz. Between 2 and 3 Hz, gains dropped slowly and then steeply descended above 3 Hz as phases became scattered. 3. In MA, gains were lower and exhibited more scatter than in VS and NV at frequencies < 1 Hz. Phases around -180 degrees indicated that compensatory activity was occurring even with these low gains. Between 1 and 2 Hz, response gains steeply ascended, implying that reflex mechanisms were becoming the predominant mechanism for compensation in this frequency range. Above 2 Hz, gains dropped off to 0.5 and lower, but phases remained close to -180 degrees, suggesting that the reflex mechanisms were not dominant in this frequency range, but that they were still contributing toward compensation for the trunk perturbation. 4. Neck muscle electromyographic (EMG) responses were similar in VS, NV, and MA, demonstrating decreasing gains between 0.35 and 1.5 Hz, and then increasing beyond the previous high level of activation. This U-shaped response pattern implies an enhanced participation of neural mechanisms, probably of reflex origin, in the higher frequency range. 5. Patterns observed during external perturbations of the trunk were not apparent in the response dynamics of voluntary head tracking. In VT, subjects successfully tracked the stimulus only at the lowest frequencies of head movement.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3