Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations

Author:

Chen L. L.1,Wise S. P.1

Affiliation:

1. Laboratory of Neurophysiology National Institute of Mental Health,Poolesville, Maryland 20837, USA.

Abstract

1. The companion paper reported that a substantial proportion of cells in the supplementary eye field (SEF) of macaque monkeys show significant evolution of neuronal activity as subjects learn new and arbitrary stimulus-saccade associations. The purpose of the present study was to compare and contrast the activity of the SEF and the frontal eye field (FEF) during such conditional oculomotor learning. 2. In both SEF and FEF, we observed learning-dependent and learning-selective activity, defined as significant evolution of task-related activity as monkeys learned which of four saccades was instructed by a novel stimulus. By definition, in addition to changes as the monkeys learned the instructional significance of a novel instruction stimulus, learning-dependent activity also showed task-related modulation for trials instructed by familiar stimuli, whereas learning-selective activity did not. Of the 186 SEF neurons adequately tested, 81 (44%) showed one of these two categories of learning-related change. By contrast, of the 90 FEF neurons adequately tested, only 14 (16%) showed similar properties. This difference was highly statistically significant (chi 2 = 21.1; P < 0.001). 3. We also observed persistent differences in activity for trials with familiar versus novel instruction stimuli, which we termed learning-static effects. In some cases, the learning-static effect coexisted with learning-dependent or learning-selective changes in activity, although in others it did not. In the former cases, activity changed systematically during learning, but reached a level that differed from that for familiar stimuli instructing the same saccade. In the latter cases, the activity did not change significantly as the monkey learned new conditional oculomotor associations, but did show a significant difference depending upon whether a novel or familiar stimulus instructed a given saccade. Overall, 66 of 186 (35%) cells in the SEF and 17 of 90 (19%) cells in the FEF showed learning-static effects in one or more task periods. This difference was statistically significant (chi 2 = 7.9; P < 0.005). 4. The significant difference in the properties of SEF and FEF cells suggests a functional dissociation of the two areas during conditional oculomotor learning. In this respect, the FEF resembles the primary motor cortex, whereas the SEF resembles the premotor cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3