High extracellular potassium, and not extracellular glutamate, is required for the propagation of spreading depression

Author:

Obrenovitch T. P.1,Zilkha E.1

Affiliation:

1. Department of Neurological Surgery, Institute of Neurology, London,United Kingdom.

Abstract

1. Cortical spreading depression (SD) is a propagating transient suppression of electrical activity associated with depolarization, which may contribute to the pathophysiology of important neurological disorders, including cerebral ischemia and migraine. The purpose of this study is to ascertain whether SD propagation depends on local accumulation of extracellular K+ or glutamate. 2. Propagating SD recorded through microdialysis probes perfused with artificial cerebrospinal fluid (ACSF) was much smaller than that recorded with conventional glass microelectrodes, presumably because some SD-induced transient changes in the extracellular fluid composition were buffered by ACSF. We have exploited this effect to determine whether perfusion with a medium containing increasing amounts of K+ and/or glutamate favors SD propagation. 3. Increasing the concentration of K+ (15-60 mmol/l) in the perfusion medium dose-dependently restored SD propagation, whereas application of 100-250 mumol/l glutamate through the microdialysis probe had no effect. Superimposing 200 mumol/l glutamate onto 15 and 30 mmol/l K+ did not further improve the restoration of SD propagation by K+. 4. Because potent uptake mechanisms may efficiently clear exogenous glutamate from the extracellular space, the effect of local inhibition of high-affinity glutamate uptake was also studied. Perfusion of the recording microdialysis probe with 1 mmol/l L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC), either alone or together with 200 mumol/l glutamate, had no effect. In addition, L-trans-PDC did not potentiate the positive effect of 30 mmol/l K+ on SD propagation. 5. These results strongly suggest that high extracellular K+, and not extracellular glutamate, is the driving force sustaining SD propagation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3