Development of glycine- and GABA-gated currents in rat spinal motoneurons

Author:

Gao B. X.1,Ziskind-Conhaim L.1

Affiliation:

1. Department of Physiology, University of Wisconsin Medical School,Madison 53706.

Abstract

1. Developmental changes in glycine- and gamma-aminobutyric acid (GABA)-activated currents were studied in spinal motoneurons of embryonic and neonatal rats with the use of whole cell recording techniques. 2. Pressure ejection of glycine or GABA onto motoneuron somata produced Cl(-)-mediated inward currents and membrane depolarizations. During embryonic development, the average amplitude of GABA-gated currents was threefold larger than that of glycine-gated currents, but as a result of a large eightfold postnatal increase in glycine-activated currents, similar currents were produced by both amino acids after birth. 3. At all ages the decay of glycine- and GABA-gated currents best fit one-exponential curve, and their time constants were similar. The average decay time constant decreased by twofold after birth. 4. The ionic specificity of glycine- and GABA-gated channels was studied to determine whether the large amplitude of GABA-activated currents in embryonic motoneurons resulted from the contribution of an outward HCO-3 movement. Manipulations of Cl- and HCO-3 concentrations produced changes in the reversal potentials of glycine and GABA that were similar to the calculated changes in the equilibrium potentials of Cl-. This suggested that glycine- and GABA-gated currents were Cl- specific, and HCO-3 movement did not contribute more to the current generated by GABA than that produced by glycine. 5. Glycine- and GABA-gated currents were associated with severalfold increases in membrane conductance. The conductance increase generated by GABA in embryonic motoneurons was sevenfold larger than that generated by glycine, but similar conductance changes were produced by both amino acids after birth.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3