Affiliation:
1. Laboratory for Neural Information Processing, Institute of Physicaland Chemical Research (RIKEN), Saitama, Japan.
Abstract
1. Several areas in the monkey dorsal visual pathway, including the dorsal part of the medial superior temporal area, have been found to contain cells responding to movements of a wide visual field and are suggested to be involved in analyzing self-induced motion information. In the present study, positron emission tomography was used to localize human cortical regions responding to wide-field visual motion. Changes in regional cerebral blood flow (rCBF) were measured when subjects maintained fixation and viewed low-contrast (0.15 log units brighter than the background) dots subtending 80 x 80 degrees and moving either coherently or incoherently. Brain foci were localized after activity in a fixation-only paradigm was subtracted from that in the two moving dot paradigms. 2. Both the coherent and incoherent movements significantly activated the primary/secondary visual cortex and surrounding visual areas in the cuneus and superior occipital gyrus. Subtraction of images between the coherent and incoherent movements showed that the activity caused by the two types of movement was comparable in these early visual cortical regions. 3. In the lateral occipitotemporoparietal cortex, the coherent movement specifically activated two separate areas; a posterior focus was located at the border of the right occipitotemporal gyri, and a dorsoanterior focus was located bilaterally in the temporoparietal cortex. The incoherent movement did not activate these regions. 4. A fine anatomic localization using individual magnetic resonance images was performed for the bilateral activation in the temporoparietal cortex, which was found to be located mainly in the depth of the inferior parietal lobule and a small portion of the superior and middle temporal gyri. 5. Both the coherent and incoherent movements activated a part of the superior parietal lobule located within the intraparietal sulcus (Brodmann area 7). The bilateral foci activated by the coherent movement were located more anteriorly than the focus activated by the incoherent movement. Subtraction images between the coherent and incoherent movements, however, did not reveal any significant rCBF increases in the superior parietal lobule. 6. Several other cortical regions known to be involved in visuospatial and visuomotor functions were also activated by the coherent movement, including the frontal eye field (Brodmann area 8) and premotor cortex (Brodmann area 6) in the frontal lobe. 7. The posteriorly located activation at the border of occipito-temporal gyri corresponds to the homologue of the middle temporal area reported in previous activation studies using small to medium-sized motion stimuli. The bilateral activation in the inferior parietal lobule appeared to rely on wide-field motion stimulation.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献