Interaction of anionic and cationic currents leads to a voltage dependence in the odor response of olfactory receptor neurons

Author:

Firestein S.1,Shepherd G. M.1

Affiliation:

1. Department of Biological Sciences, Columbia University, New York, NewYork 10027, USA.

Abstract

1. We recorded odor-induced currents from isolated olfactory receptor neurons of the land phase tiger salamander (Ambystoma tigrinum) with the whole cell patch clamp. 2. In a subset of cells the current-voltage relation for the odor-induced current showed a strong rectification with, in some cells, a negative resistance slope between about -45 and -25 mV. In these cells there was little or no odor-induced current at -55 mV, the average resting potential of olfactory neurons. 3. Depolarizing the membrane to +20 mV revealed a large outward current, and on repolarizing the membrane to -55 mV we could observe a large inward current. This current was not observed in the absence of the depolarizing step or in the absence of odor stimuli. 4. This odor-induced tail current was dependent on extracellular Ca2+ and voltage, activating with increased depolarization. The reversal potential was sensitive to the chloride equilibrium potential and it could be significantly blocked by niflumic acid, a blocker of calcium-activated chloride currents. The voltage dependence could result from either the voltage-dependent block of adenosine 3',5'-cyclic monophosphate-gated cation channels known to be activated by odorants and permeable to Ca2+, or from an inherent voltage dependence in the chloride channel gating. 5. The current appears to function as a regenerative mechanism that might increase the amplitude and duration of the odor-induced current, especially to low concentrations of stimulus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3