Calcium-independent depolarization-activated potassium currents in superior colliculus-projecting rat visual cortical neurons

Author:

Albert J. L.1,Nerbonne J. M.1

Affiliation:

1. Department of Molecular Biology and Pharmacology, WashingtonUniversity School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

1. K+ conductances were characterized in isolated, identified superior colliculus-projecting (SCP) rat visual cortical neurons. SCP neurons were identified in vitro under epifluorescence illumination after in vivo retrograde labeling with rhodamine-labeled microspheres or "beads." For experiments, SCP neurons were isolated from the primary visual cortex of postnatal day 7 to 16 (P7-P16) Long Evans rat pups after bead injections into the ipsilateral superior colliculus at p5. 2. Recording conditions were optimized to allow the characterization of Ca2+ -independent K+ conductances. SCP cells that were largely devoid of processes were selected for recording, and experiments were completed 2-30 h after cell isolation. Ca2+ -independent, depolarization-activated K+ currents were routinely recorded during 200-ms voltage steps to potentials positive to -50 mV from a holding potential of -70 mV. 3. Peak outward current densities and the relative amplitudes of the peak and plateau outward currents evoked during 200-ms voltage steps varied among SCP cells. Although cells were isolated from animals at different ages (P7-P16) and maintained for varying times in vitro (2-30 h), no correlations were found between the variations in peak current densities or peak to plateau current ratios and the age of the animal from which the cell was isolated or the length of time the cell was maintained in vitro before recording. 4. Pharmacological experiments revealed the coexpression of three K+ current components in SCP cells that could be separated on the basis of differing sensitivities to the K+ channel blockers, 4-aminopyridine (4-AP) and tetraethylammonium (TEA). Varying the concentration of 4-AP, for example, facilitated the separation of two rapidly activating K+ currents similar to A (IA) and D(ID) type currents in other cells. ID in SCP neurons is blocked by micromolar concentrations of 4-AP, whereas micromolar concentrations of 4-AP are required to effect complete block of IA in these cells. The current component remaining in the presence of high concentrations (5-10 mM) of 4-AP is slowly activating outward K+ current, similar to delayed rectifier (IK) currents in other cells. IK in SCP neurons is blocked by micromolar concentrations of TEA. 5. Activation of IA, ID, and IK in SCP neurons is voltage dependent, although the three current components display distinct time- and voltage-dependent properties. For example, although both IA and ID begin to activate at approximately -50 mV, IA activates two to three times faster than ID. In addition, the threshold for activation of IK (-30 mV) is approximately 20 mV depolarized from that of IA (or ID), and the voltage dependence of IK activation is steeper than that of IA and ID.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3